1. Course Number and Course Title:

COE533 Advanced Computer Architecture

2. Credits Hours:

3 - 0 - 3

3. Prerequisites and/or Co-Requisites:

Prerequisite: Admission to MSCoE Program

Co-requisites: None

4. Name and Contact Information of Instructor:

Dr. Tarik Ozkul Office: EB2-212

Email: tozkul@aus.edu Phone: (06) 515-2455

Office Hours: as posted on *iLearn*; also by appointment

5. Course Description (Catalog Description):

Covers techniques of quantitative analysis and evaluation of modern computing systems. Emphasizes the major component subsystems of high-performance computers: pipelining, instruction level parallelism, memory hierarchies, input/output and network-oriented interconnections

6. Textbook and other Supplemental Material:

Primary: Patterson D. and Hennessey J., "<u>Computer Architecture: A Quantitative Approach</u>", 5th Ed., 2006, Morgan Kaufman.

Supplementary: Selected Readings in Computer Architecture

7. Learning Outcomes:

This course requires the student to demonstrate the ability to:

- 1. Understand manufacturing related issues during chip manufacturing and evaluate its effects on the design process
- 2. Understand reliability related issues and be able to organize computer systems that matches required reliability conditions for given applications,
- 3. Explain the factors that define computer performance
- 4. Explain how to apply quantitative trade-off analysis in the design of a computer system
- 5. Be aware of quantitative principles of computer design
- 6. Explain modern memory system design techniques including single and multi-level cache and virtual memory
- 7. Explain processor pipeline issues, including pipeline hazards and associated mitigation techniques
- 8. Explain the advanced scheduling techniques and instruction-level parallelism used in modern super-scalar processors

American University of Sharjah | College of Engineering

- 9. Explain relevant design issues for multiprocessor systems, including cache coherency issues
- 10. Explain design principles and application of interconnection networks such as MPP network

8. Teaching and Learning Methodologies:

9. Course Topics and Schedule:

Topic	Weeks
Review: Perf/Cost Analysi, Amdhal's law, Tech Trends	0.5
Instruction Set Architecture	1
Pipelining, Hazards and Static Branch Prediction	2
ILP: Scoreboarding, Tomasulu, speculation	1
ILP: Dynamic Prediction Limits of ILP	1.5
Memory Hierarchy Design	1
Memory DRAM,VM and Banks	1
I/O: Metrics, Quieuing, Busses, Disks, RAID	2
Interconnection Networks	2
Multiprocessing	2
Review & Projects Presentation	2
Total:	16

10. Schedule of Laboratory and other Non-Lecture Sessions:

11. Out-of-Class Assignments with Due Dates:

Assignment	Due Date (tentative)
ISA HW	Week 2
Scoreboarding HW	Week 4
Tomosulu HW	Week 6
Dynamic prediction HW	Week 9

12. Student Evaluation:

Assignment	Due Date (tentative)
HW	%15
Quizzes	%15
Midterm exam	%20
Project	%25
Final exam	%30

American University of Sharjah | College of Engineering

13. Contribution of Course to Program Outcomes

Program Outcome	Extent of Contribution
Perform research emphasizing creativity, independent learning and scientific methods in a chosen area of computer engineering.	•
Apply advanced mathematics and engineering knowledge in identifying, formulating and solving engineering problems.	0
Select and use techniques, skills and modern tools necessary for research or professional practice.	•
Communicate effectively	
Recognize the need for, and engage in, lifelong learning	•
Attend to professional and ethical responsibilities	

Extent of contribution: • high; • medium; • low