1. Course Number and Course Title:

COE 59410 Generative Deep Learning

2. Credit Hours:

3-0-3

3. Prerequisites and/or Co-Requisites:

Prerequisite: Approval of Department Head Concurrent: None Competencies: Programming skills and undergraduate courses in Probability and Statistics.

4. Name and Contact Information of Instructor:

Dr. Imran Zualkernan

5. Course Description (Catalog Description):

Presents the principles of generative deep learning. Covers foundational networks like multi-layer perceptron and convolutional neural network (CNN). Examines generative learning techniques like autoencoders/variational autoencoders (VAE), and various types of generative adversarial networks (GAN). Includes examples using state-of-the-art software.

6. Textbook and other Supplemental Material:

Textbook:

• Rowel Atienza, Advanced Deep Learning with TensorFlow 2 and Keras: Apply DL, GANs, VAEs, deep RL, unsupervised learning, object detection and segmentation, and more, 2nd edition, Packt Publishing, 2020, ISBN-13: 978-1838821654.

Other recommended books:

- Jakub Langr and Vladimir Bok, *GANs in Action: Deep learning with Generative Adversarial Networks*, Manning Publisher, 2019, ISBN-13: 9781617295560.
- David Foster, *Generative Deep Learning: Teaching Machines to Paint, Write, Compose, and Play,* 1st edition, O'Reilly Media, 2019, ISBN-13: 978-1492041948.

Supplemental material:

- Deep learning software (free, open source).
- Selected articles, journal papers, and data sets.

7. Course Learning Outcomes:

Upon completion of the course, students will be able to:

- 1. Analyze the back-propagation algorithm and its caveats.
- 2. Implement convolutional neural networks.
- 3. Design various types of autoencoders.
- 4. Design various types of GANs.
- 5. Assess the challenges in training and evaluating GANs.
- 6. Discuss methods used to create adversarial examples.
- 7. Communicate current research results in generative deep learning effectively.

8. Teaching and Learning Methodologies:

Methods include lectures, problem and project-based learning methods (assignments, exams, survey paper, research project, presentation), and class discussions.

9. Course Topics and Schedule:

Торіс	Week #
Introduction and overview of Python	1
The back-propagation algorithm	2
Multi-layer perceptron, CNN and RNNs	3
Convolutional networks	4
Autoencoders	5
Variational autoencoders	6
Introduction to Generative adversarial networks (GAN)	7
Deep Convolutional GAN	8
Challenges in training and evaluation of GANs	9
The Semi-Supervised GAN (SGAN)	10
The Conditional GAN (CGAN)	11
The Progressive GAN	12
The Cycle GAN	13
Adversarial Examples	14
Class Presentations	15
Final Exam	16