- **1.** Course Number and Course Title: CMP 418 – Multicore Computing
- 2. Credits hours 3-0-3
- **3. Prerequisites and/or co-requisites** <u>Prerequisites:</u> CMP 310 Operating Systems
- 4. Name and Contact Information of Instructor: Dr. Gerassimos Barlas

5. Course Description

Covers models of parallel computation and software development on multicore systems. Examines problem decomposition patterns including divide-and-conquer, geometric decomposition, task parallelism and pipelining. Covers program structure patterns such as master-worker, map-reduce and fork-join. Provides hands-on experience with high-performance multicore and many-core platforms. Examines state-of-the-art software tools for both Central Processing Unit and Graphics Processing Unit architectures.

6. Textbook, title, author, and year

Textbook:

 Gerassimos Barlas, "Multicore and GPU Programming: An Integrated Approach", 1e, Morgan Kaufmann, ISBN-13 978-0124171374, 2014

Supplemental material:

- Ian Foster, <u>Designing and Building Parallel Programs: Concepts and Tools for Parallel Software Engineering</u>, Addison-Wesley Pub Co, ISBN: 0201575949, 1995, also available on-line at <u>http://www.mcs.anl.gov/dbpp/</u>
- □ Selected material from online sources:
 - MPI 3.1 specification
 - OpenMP 5.0 specification
 - NVidia's CUDA tutorials and reference material

7. Course Learning Outcomes

Upon completion of the course, students will be able to:

- 1. Explain Flynn's taxonomy of computer architectures.
- 2. Describe the most important contemporary multicore machine architectures.
- 3. Calculate speedup and efficiency to measure the performance of a parallel algorithm.
- 4. Use MPI to write distributed memory programs.
- 5. Transform a sequential program into a multi-threaded one using OpenMP compilerdirectives.
- 6. Design and implement programs running on GPUs by utilizing the CUDA platform.
- 7. Employ different software design patterns (e.g. master-worker, pipelining, map-reduce, etc.) for developing parallel applications.

8. Teaching and Learning Methodologies:

Methods include lectures, homework, quizzes, exams, class discussions and a project.

9. Course Topics and Schedule:

Topics covered	Week
Parallel computers, Flynn's taxonomy, modern architectures	1
Amdahl's & Gustafson's laws, speedup and efficiency	2
Parallel program design methodologies: master-worker, pipelining, map-reduce.	3
Shared memory programming with threads	4
Shared memory programming with threads : sample applications	5
MPI: Introduction	6
MPI: Point to Point Communications	7
MPI: Collective communications	8
MPI: master-worker, sample applications	9
Shared memory programming with OpenMP	10
OpenMP directives and clauses	11
GPU programming with CUDA: introduction, grids and blocks	12
CUDA: GPU memory hierarchy	13
CUDA: optimizations, unified memory	14
CUDA: sample applications	15
Exams and Quizzes	16