1. Course Number and Course Title:

COE 639 Digital video compression

2. Credits Hours:

3-0-3

3. Prerequisites and/or Co-Requisites:

Prerequisite: Approval of the CSE Head of Department Concurrent: None Competencies: Undergraduate-level courses in statistics and probabilities, and C/C++ programming

4. Name and Contact Information of Instructor:

Dr. Tamer Shanableh

5. Course Description (Catalog Description):

Covers the theory and applications of digital video compression; introduces lossless and lossy compression algorithms; covers transform coding; introduces international compression standards such as JPEG and MPEG; examines digital video transcoding and error resiliency.

6. Textbook and other Supplemental Material:

Textbook:

• Mohammed Ghanbari, *Standard Codecs: Image Compression to Advanced Video Coding*, 3rd edition, 2011, IET Telecommunications Series, ISBN-13:978-0863419645

Supplementary material:

- Vivienne Sze, Madhukar Budagavi, Gary Sullivan, *High Efficiency Video Coding* (*HEVC*) Algorithms and Architectures, Springer, 2014, ISBN: 978-3-319-06895-4
- David Salomon, *Handbook of data compression*, 2010, Springer, ISBN-13: 978-1848829022

7. Course learning Outcomes:

Upon completion of the course, students will be able to:

- 1. Implement basic digital signal processing techniques such as quantization, convolution and Discrete Fourier Transformation
- 2. Apply concepts of information theory and statistical coding to code data in a lossless manner.
- 3. Apply image transform using Discrete Cosine Transformation (DCT) and Haar transformation.
- 4. Explore and analyze various components of single layer video compression including preprocessing, mode selection, block-based prediction, lossy and lossless coding.
- 5. Expand single layer video codecs into scalable video codecs
- 6. Design video transcoders for bit rate adaptability, format portability and error resiliency.
- 7. Develop a no-reference objective video quality assessment system.

American University of Sharjah | College of Engineering

8. Teaching and Learning Methodologies:

Methods include lectures; problem and project-based learning methods (simulations, and research paper) and class discussions.

Торіс	Weeks
Course introduction and Matlab review	Week 1
Information theory and lossless compression	Week 2
Information theory and lossless compression	Week 3
Review of Digital signal processing; sampling, convolution, quantization and DFT	Week 4
Transform coding (DCT and Haar)	Week 5
Transform coding (DCT and Haar)	Week 6
Motion estimation and motion compensation.	Week 7
Motion estimation and motion compensation.	Week 8
Video encoders and decoders + Midterm exam	Week 9
Advanced digital video coding using HEVC	Week 10
Scalable video coding	Week 11
Video transcoding	Week 12
Video compressed domain processing and error resiliency	Week 13
No-reference quality assessment of digital video	Week 14
Review and evaluation, class presentations	Week 15
Final exam	Week 16

9. Course Topics and Schedule: