1. Course Number and Course Title:

COE 533 Advanced Computer Architecture

2. Credits Hours:

3 - 0 - 3

3. Prerequisites and/or Co-Requisites:

Prerequisite: Approval of the CSE Head of Department Co-requisites: None Competencies: Undergraduate course in computer architecture

4. Name and Contact Information of Instructor:

Dr. Assim Sagahyroon

5. Course Description (Catalog Description):

Covers techniques of quantitative analysis and evaluation of modern computing systems. Emphasizes the major component subsystems of high-performance computers: pipelining, instruction level parallelism, memory hierarchies, input/output and network-oriented interconnections.

6. Textbook and other Supplemental Material:

Primary: Patterson D. and Hennessey J., "Computer Architecture: A Quantitative

Approach", 6th Ed., 2019, Morgan Kaufman.

Supplementary: Selected Readings in Computer Architecture

- J. Hennessey and D. Patterson, "A new golden age for computer architecture", Communications of the ACM, January 2019.
- Yu Gan and Christina Delimitrou, "The Architectural Implications of Cloud Microservices"IEEE Computer Architecture Letters, Vol. 17, No. 2, July-December 2018
- Ayaz Akram 1 And Lina Sawalha , "A Survey of Computer Architecture Simulation Techniques and Tools", IEEE Access, May 2019
- Patrick Eitschberger ; Jörg Keller, "Energy-Efficient Task Scheduling in Manycore Processors with Frequency Scaling Overhead", 23rd Euromicro International Conference on Parallel, Distributed, and Network-Based Processing, 2015
- Vanita Agarwal ; Rajendrakumar A. Patil ; Arunkumar B. Patki,"Architectural Considerations for Next Generation IoT Processors", IEEE Systems Journal, Vol. 13, No. 3, 2019
- Marcos Horro ; Gabriel Rodríguez ; Juan Touriño, "Simulating the Network Activity of Modern Manycores", IEEE Access, Vol. 7, 2019
- Shahzad Muzaffar ; Ibrahim M. Elfadel, "A Domain-Specific Processor Microarchitecture for Energy- Efficient, Dynamic IoT Communication", IEEE Transactions on Very Large Scale Integration (VLSI) Systems, Vol. 27, No. 9, 2019

7. Learning Outcomes:

Upon completion of the course, students will be able to:

- 1. Analyze various performance characteristics (such as power, energy, and speed) of a computer system
- 2. Analyze hardware & software trade-offs to design the instruction setarchitecture interface (ISA)
- 3. Apply instruction level parallelism to improve processor's performance
- 4. Evaluate dynamic scheduling methods and their adaptation to contemporary microprocessor design
- 5. Design and analyze a memory hierarchy as related to processors' performance
- 6. Demonstrate an understanding of interconnection networks and multicores
- 7. Discuss trends in computer architecture design

8. Teaching and Learning Methodologies:

Methods include lectures; problem and project based learning methods (assignments, class presentation, exams and research project, etc.) and class discussions.

9. Course Topics and Schedule:

Торіс	Weeks
Review, Instruction Set Architecture	Week 1
Memory Hierarchy Design	Week 2
Pipelining, Hazards	Week 3
Branch Prediction	Week 4
ILP: Instruction Level Parallelism	Week 5
Dynamic Prediction Limits of ILP	Week 6
Data Level Parallelism in Vector and SIMD Architectures	Week 7
Data Level Parallelism in GPU Architectures	Week 8
Thread Level Parallelism + Midterm exam	Week 9
Memory Consistency	Week 10
Domain Specific Architectures	Week 11
Warehouse Scale Computers	Week 12
Trend in processor's design-A	Week 13
Trend in processor's design-B	Week 14
Projects Presentation	Week 15
Final Exam	Week 16