1. Course Number and Course Title:

CMP 340 – Design and Analysis of Algorithms

2. Credit Hours:

3 - 0 - 3

3. Prerequisites and/or Co-Requisites:

Prerequisites: CMP 305 and (STA 201 or STA 202 or NGN 111 or QBA 201)

4. Name and Contact Information of Instructor:

Name: Dr. Salam Dhou

5. Course Description (Catalog Description):

Covers algorithmic analysis; algorithmic strategies; advanced searching and sorting algorithms; hashing, graph and spanning trees algorithms; topological sort; pattern matching; numerical algorithms; matrix operations; complexity classes; approximation algorithms; and basic computability theory.

6. Textbook and other Supplemental Material:

Textbook:

• A. Levitin, Introduction to the Design & Analysis of Algorithms, 3th ed., Addison-Wesley/Pearson, 2012.

Other supplemental material:

• T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein, *Introduction to Algorithms*, 3rd ed., MIT Press, 2009.

7. Course Learning Outcomes:

Upon completion of the course, students will be able to:

- 1. Describe the characteristics of the major complexity classes (P class, NP class).
- 2. Use algorithm design methods, such as exhaustive search, divide-and-conquer and dynamic programming, to develop efficient algorithms.
- 3. Use advanced searching techniques, such as hashing and 2-3 trees.
- 4. Show how time and space complexities can be traded-off (e.g. distribution counting sort, hashing).
- 5. Analyze numerical computations algorithms (e.g. matrix multiplication).
- 6. Apply efficient algorithms, such as Quicksearch, in string/pattern matching problems.
- 7. Use fundamental graph algorithms, like traversal, shortest path and spanning tree in the solution of real-life problems.

8. Teaching and Learning Methodologies:

Methods include lectures, problem-based learning, class discussions, and group work. Students learning is assessed via in-class quizzes, exams, homework, and team project.

9. Course Topics and Schedule:

Topic/Activity	Weeks
Introduction to algorithms	Week 1
Analysis, principles and asymptotic notations	Week 2

American University of Sharjah | College of Engineering

Analyzing non-recursive algorithms	Week 3
Analyzing recursive algorithms	Week 4
Brute-force algorithms: selection sort, bubble sort, brute-force string	Week 5
matching, and sequential search	
Decrease-and-conquer algorithms: insertion sort, topological sort, generating	Week 6
permutations and subsets, Russian Peasant multiplication, selection and	
partitioning algorithms	
Divide-and-conquer algorithms: numeric calculation algorithms (large integer	Week 7
multiplication, Strassen's matrix multiplication)	
Transform-and-conquer techniques: AVL trees, Heaps and Heapsort	Week 8
Space-time tradeoffs: counting sort, quicksearch and string/pattern matching	Week 9
Space-time tradeoffs: hashing, 2-3 trees, and B-trees	Week 10
Dynamic programming	Week 11
Greedy algorithms: minimum spanning tree and shortest path algorithm	Week 12
P, NP and NP-complete problems	Week 13
Approximation algorithms	Week 14
Revision and team project presentations	Week 15
Final Exam	Week 16